
Stabilizer Entropy and entanglement complexity in the Sachdev-Ye-Kitaev model

Barbara Jasser 1,2,∗ Jovan Odavić 2,3,† and Alioscia Hamma 1,2,3‡
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The Sachdev-Ye-Kitaev (SYK) model is of paramount importance for the understanding of both
strange metals and a microscopic theory of two-dimensional gravity. We study the interplay between
Stabilizer Rényi Entropy (SRE) and entanglement entropy in both the ground state and highly
excited states of the SYK4+SYK2 model interpolating the highly chaotic four-body interactions
model with the integrable two-body interactions one. The interplay between these quantities is
assessed also through universal statistics of the entanglement spectrum and its anti-flatness. We
find that SYK4 is indeed characterized by a complex pattern of both entanglement and non-stabilizer
resources while SYK2 is non-universal and not complex. We discuss the fragility and robustness of
these features depending on the interpolation parameter.

Introduction.— The Sachdev-Ye-Kitaev (SYK) model
[1, 2] describes the behavior of strongly correlated
fermions in strange metals [3]. In recent years, the model
has gained new interest from the high-energy community
due to its holographic duality [4–6]. In the infra-red limit
and large number of degrees of freedom, the model ac-
quires conformal symmetry. The leading corrections to
the out-of-time-ordered four-point correlation functions
exhibit exponential growth over time. The rate of this
growth reaches the universal upper bound established in
[7], see [8, 9]. The low-energy sector of the SYK4 model
is governed by an emergent reparametrization symmetry,
described by Jackiw-Teitelboim (JT) gravity [6], provid-
ing insight into the holographic description of black holes
and their thermodynamic properties. In quantum ther-
modynamics, the SYK model has been studied for its
potential to show quantum advantage as a quantum bat-
tery [10–12], with a super extensive charging power [13].

The interpolation between the four-body (SYK4) and
the two-body (SYK2) model [14, 15] provides a connec-
tion to a model of strongly correlated electrons. The two
theories are very different: the SYK4 is chaotic, with
an exponential density of states at low energy, while the
SYK2 is integrable, with a polynomially vanishing gap.
Remarkably, both models exhibit a volume law for en-
tanglement [16]. One might wonder what makes these
two regimes so different. Entanglement has been deeply
investigated to better understand both the chaotic na-
ture of SYK models [16–18] and their connection to holo-
graphic theory and complex quantum systems [3, 19, 20]
but the transition to SYK2 shows that entanglement
alone is not enough.

The second layer of quantum complexity is given by
non-stabilizerness [21], a crucial resource in the context
of universal quantum computation, error correction [22–
26] and quantum simulation [27–30]. Recently, non-
stabilizerness has risen to prominence due to finding a
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Figure 1: Schematic representation of the SYK4+SYK2

model H(g) (see Eq. (5)). The left side (g = 0) cor-
responds to SYK4 featuring the Wigner-Dyson entan-
glement spectrum statistics (ESS) in the ground state
and near-universal capacity of entanglement CE . On the
right side (g = 1) the SYK2 model is shown, exhibiting
Poisson ESS and non-universal CE . In the ground state,
these features are fragile for SYK4 and robust for SYK2.
Conversely, in high energy states the SYK4 properties
extend to every value of g ̸= 1 making the SYK2 features
the fragile ones.

unique computable monotone for pure states, the Sta-
bilizer Rényi Entropy (SRE) [31]. In the context of
high-energy physics, both SRE and entanglement are
studied for heavy nuclei simulations [32] and neutrino
physics [33, 34]. Moreover, the delocalization due to the
entanglement of non-stablizerness resources has recently
been connected to the holographic dual of back-reaction
in the context of AdS-CFT [35], features of CFT [36, 37],
and the harvesting of quantum resources from the vac-
uum of a quantum field [38, 39]. When entanglement
delocalizes and scrambles non-stabilizer resources, this
gives rise to universal behavior of out-of-time-order cor-
relation functions, entanglement fluctuations [40, 41] and
the onset of chaotic behavior in quantum many-body sys-
tems [42–44] in the ETH-MBL transition [45–48]. On the
other hand, the fine structure of entanglement reveled
by the statistics of entanglement gaps (ESS) [43, 49, 50]
reaches the complex universal patterns of random matrix
theory thanks to non-stabilizerness.
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The main goal of this Letter is to study the
SYK4+SYK2 model beyond perturbative limits under
the lens of the emergence of quantum complex behavior
from interplay between entanglement and SRE. We find
that SYK4 exhibits a complex interplay of entanglement
and SRE both in the ground state and in the high-energy
eigenstates (middle of the spectrum), while SYK2 shows
patterns of this interplay that are typical of integrable
or non-chaotic models [51]. This is revealed by the ad-
herence of SYK4 to Haar-like behavior for entanglement
entropy, entanglement eigenvalues, and gaps statistics,
capacity of entanglement, higher values of SRE, espe-
cially in its non-local features. On the other hand, SYK2
shows a lower level of SRE, and non-universal statistics
in all the figures of merit mentioned above.

An important question is how robust are these behav-
iors in the SYK4+SYK2 model. The universal proper-
ties of SYK4 are fragile in the ground state: for every
g > 0 the system falls into the SYK2 class. On the other
hand, high-energy states show a reversed behavior. The
SYK4 phase extends to every value of g < 1. These
findings enrich those of [14] based on Green’s functions.
In addition, we also show that adherence of the energy
spectrum to Wigner-Dyson universal behavior is fragile
for SYK4+SYK2. Finally, we show that the behavior
of SRE in the ground state is capable of classifying the
8−fold way of the symmetries of SYK4. A similar conclu-
sion is also shown for the energy gap above the ground
state. In order to argue about the robustness of these
features, we apply quantum-information theoretic tools
like the Kullback-Leibler divergence fidelity.

The model.— The most general form of SYK models
[4, 52] considers a q-body all-to-all interaction between
N Majorana fermionic modes. The Hamiltonian in terms
of Majorana operators reads

Hq = (i)q/2
∑

1≤i1<...<iq≤N

Ji1i2...iqχi1χi2 . . . χiq (1)

with q an even integer number. The disorder in the model
is due to the couplings Ji1,i2,...,iq which are identical,
independent distributed (i.i.d.) gaussian variables with
vanishing mean and variance

Ji1,i2,...,iq = 0 ; J2
i1,i2,...,iq

=
(q − 1)!J

Nq−1
. (2)

For q > 2, the system exhibits quantum chaos [53, 54],
as evidenced by several established indicators. One key
probe is level repulsion in the energy spectra, character-
ized by the statistical distribution of energy level spac-
ings [55–58]. This indicates that the eigenstates of the
Hamiltonian are highly delocalized and correlated, a hall-
mark of quantum chaos. The system is defined on a com-
plete graph, so the interactions are strongly non-local.
Using the Jordan-Wigner transformations it is possible
to map the Majorana operators into Pauli spin strings,
used in the numerical simulations [59]. Notice that each
spin operator can be expressed in terms of two Majorana

operators. Therefore, the total number of Majorana op-
erators is double the number of Paulis. The simplest
version of SYK models is the SYK2

H2 = i
∑

1≤i<j≤N

Ji,jχiχj . (3)

Since the interactions between fermions are considered
in pairs, SYK2 represents the free fermions point of the
theory. This results in Gaussian statistics for its spectral
properties, meaning that it does not show the same level
of randomness and complexity found in chaotic systems
[5, 60]. The SYK2 model serves as a simple example of a
disordered fermionic system and is analytically solvable
[16]. The four-body interaction model, called SYK4, is

H4 = −
∑

1≤i<j<k<l≤N

Ji,j,k,lχiχjχkχl . (4)

This model satisfies the usual probes of quantum chaos
[53, 54], i.e. the Hamiltonian exhibits level repulsion in
its spectrum. The SYK4+SYK2 model is defined as [14]

Hg := (1− g)H4 + gH2, (5)

with g ∈ [0, 1]. In the following, we compute by exact
diagonalization the energy spectrum of Hg together with
the exact ground state (GS) and middle-spectrum eigen-
state (MS) for a number of realizationM of the disorder.
The eigenvalues of the reduced density operator (RDM)
to half-system ρR will be denoted by {λk} and are sorted
in ascending order.
Entanglement.— To quantify the bipartite entangle-

ment of the interpolated model, we focus on Rényi en-
tropies defined as

Sα =
1

1− α
log Tr [ραR], α ∈ [0, 1) ∪ (1,∞), (6)

The von Neumann entanglement entropy S(ρR)1 =
−Tr(ρR log(ρR)) corresponds to the limit α→ 1+.
For random quadratic Hamiltonians, a class of models

to which the SYK2 Hamiltonian belongs [16], the average
ground-state entanglement entropy was derived in closed
form in [61], given by

SSYK2
1 (R, f) = K(f) ln (2)R, (7)

where

K(f) =

[
1− 1 + f−1(1− f) ln (1− f)

ln 2

]
. (8)

Here, f = R/N spin represents the ratio between the sub-
system size R and the total system size in terms of the
number of qubits. The entanglement entropy scaling of
the SYK2 ground state follows a volume law (extensive
scaling with subsystem size) but with a coefficient de-
pendent on the ratio f , distinguishing it from the fully
quantum chaotic regime in the thermodynamic limit.
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Efforts to extend these insights to the SYK4 model
include works such as Refs. [17, 62, 63]. On the other
hand, the maximally chaotic random pure state, sampled
uniformly according to the Haar measure, exhibits the
Page value for entanglement entropy, given by

2SHaar
1

N ln (2)
= 2f, for f ∈ [0, 1/2], (9)

to leading order in the system size [64, 65].
In Fig. 2, we present the results for the rescaled en-

tanglement entropy in the GS and MS of Hg of the in-
terpolated SYK Hamiltonian, with f = 1/2. The aver-
aging is performed over different partitions of the system
(denoted with an overline S)[66] and multiple disorder
realizations (denoted with ⟨⟩M ) of the model for each
value of the interpolation parameter g. Details of the re-
alization and disorder statistics for various system sizes
are provided in [67]. We see that for g = 0 (SYK4) the
GS is closer than g = 1 (SYK2) to the Haar value, al-
though none of them reaches the universal value. On the
contrary, for MS, the relative gap ∆S1 shows a perfect
adherence of SYK4 with Haar value unlike SYK2 as it is
shown by the finite-size scaling in the inset. The behav-
ior with g suggests that the MS universal properties are
valid for all g ̸= 1, making SYK4 robust from this point
of view. A similar analysis has been conducted for SYK4
in [17].

A finer probe into the structure of entanglement
is given by the full distribution of the eigenvalues of
the RDM. The reference Haar value is related to the
Marchenko-Pastur (M-P) distribution as the limiting dis-
tribution of eigenvalues of Wishart matrices and reads
ηHaar(x) = 1− 2

π

(
x
√
1− x2 + arcsinx

)
; see [42, 68]. To

distinguish two probability distributions we employ the
Kullback-Leibler divergence DKL(p||q) :=

∑
i pi(log pi −

log qi). The results in the top row of Fig. 3 show the
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Figure 2: Averaged bipartite entanglement in the GS
(left panel) and MS (right panel) of the SYK4+SYK2
model Hg as a function of g. Shaded areas represent the
standard deviation across M realizations of the Hamilto-
nian. We define ∆S1 := |(S1−SHaar

1 )/SHaar
1 | the relative

gap with the Haar (Page) value. The inset shows the
finite size scaling of the relative gap ∆S1 for g = 0, 1.
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Figure 3: Renormalized RDM eigenvalues of half-
subsystem. The reference value is the Marchenko-Pastur
(M-P) distribution ηHaar(x). We define ηk = k/d and
xk = (1/2)

√
λkd where d = 2N/4 for f = 1/2.

fidelity DKL(ηg|ηg+ϵ) between two distributions of the
eigenvalues of the RDM for two nearby values g, g + ϵ
of the interpolation parameter. This quantity can serve
as a probe of a sharp transition associated with an ob-
servable consisting of a probability distribution. We see
that the GS and MS behave in symmetric and opposite
ways. The structure of the eigenvalues of the RDM of the
GS shows a sharp transition at g > 0 and then smooths
out. On the other hand, for the MS, g = 1 is fragile and
the eigenvalues of the RDM of highly excited states are
smoothly varying all the way as long as SYK4 interac-
tions are different from zero. The second row of Fig. 3
shows the same statistical distance between the state for
the value g and the reference Haar value. While SYK4
is converging to the Haar value, SYK2 shoots away. The
robustness of the two phases for GS and MS respectively
is confirmed. In other words, for every value of g ̸= 1,
the eigenvalues of the RDM of highly excited states obey
the universal Haar behavior.
Entanglement Spectrum Statistics (ESS).— Complex

pattern of entanglement is characterized by universal
properties of the statistics of the gaps in the entan-
glement spectrum, the so-called entanglement spectrum
statistics (ESS) [49]. While chaotic systems, for instance,
non-integrable systems obeying the eigenstate thermal-
ization hypothesis (ETH) feature a universal, Wigner-
Dyson (WD) behavior for the ESS, integrable, disordered
free-fermion models feature a Poisson statistics in both
the high energy states and the long time behavior away
from equilibrium. Hybrid cases like MBL systems feature
deviations from WD in polynomial time after a quan-
tum quench [45]. The transition between the two regimes
is due to the injection of non-stabilizer resources, which
need to be scrambled around [43, 69].

From the perspective of random matrix theory, if the
eigenvalues of the reduced density matrix are uncorre-
lated, the distribution is Poissonian. Conversely, cor-
related eigenvalues follow the Wigner-Dyson universal-
ity class. This observation underscores that the entan-
glement patterns between the two interpolating regimes
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Figure 4: ESS of the GS RDM eigenvalues of the Hg

model for different values of g. We superimpose the ana-
lytical curves for the Wigner-Dyson (dashed) and Poisson
(blue continuous) distribution for comparison. System
size N = 22 and number of realizations is M = 100. The
number of bins used for the histogram is 100. The col-
ored numbers represent the KL divergence of data against
known distributions [67]

exhibit differing complexities. We focus on the proba-
bility density function (PDF) of the consecutive spacing
ratios denoted as P (r). To evaluate it we use the as-
cending eigenvalues {λk} of the reduced density matrix

and determine the spacing ratio as rk = λk+1−λk

λk−λk−1
, where

k = 2, 3, . . . , 2R−1. The resulting ratios {rk} are plotted
as a normalized histogram, excluding rare outliers with
rj > 10.0 to ensure proper normalization and accurate
binning [70, 71]. The explicit functional forms of the
corresponding Poisson and Wigner-Dyson Gaussian en-
sembles are provided in [72]. To complement this type of
analysis, we also evaluate the averaged consecutive spac-

ing ratio, defined as r̄ = ⟨⟨min(sk,j ,sk+1,j)
max(sk,j ,sk+1,j)

⟩⟩2R−2,M where

the spacings are given by sk,j = λk+1,j−λk,j , and the in-
dex j = 1, 2, . . . ,M refers to the different reduced density
matrices considered across ensemble or disorder realiza-
tions.

In Fig. 4, we compute the ESS P (r) for different real-
izations of the GS of the Hg model for several values of
g. SYK4 (g = 0) adheres to the universal WD distribu-
tion for GOE as it is expected for a real Hamiltonian. As
soon as the model is perturbed by SYK2, the distribu-
tion starts getting closer to Poisson. In the lower right
panel of Fig. 4, we show the behavior of the averaged con-
secutive spacing ratio r̄ as a function of g, which shows
a sudden jump as one moves from g = 0. We can see
that this feature of the entanglement complexity which
is typical of chaotic systems is fragile in the model. Sim-
ilar results hold for the MS, see [67].

Stabilizer Rényi Entropy (SRE)— Non-stabilizerness
is an essential property for universal quantum computa-
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Figure 5: Ensemble averaged SRE M2 in the GS of the
Hg. Panel (a): For all g the ground states exhibit a non-
vanishing amount of non-stabilizerness. Panel (b): The
non-monotonicity can be easily captured by a grouping
of points: green crosses for N mod 8 = 0, blue for N
mod 8 = 2, 6, and red circles for N mod 8 = 4. The
lines represent fits [67]. Panel (c): SRE without the
normalization with the system size as compared to the
Haar value. |G⟩⟨G| is a single qubit state which maximes
SRE [67].

tion [73]. To quantify this property, we use the Stabilizer
Rényi Entropy (SRE) [31], defined as

Mα(Ψ) =
1

1− α
log2

(
d−1

∑
P∈PN

|Tr(ΨP )|2α
)
. (10)

Here, Ψ is the density matrix of a N -qubit state |Ψ⟩,
d = 2N is the Hilbert space dimension, and PN is the
N -qubit Pauli group. The SREs for α ≥ 2 are good re-
source monotones [74]. Stabilizer entropies measure how
far a state deviates from stabilizer states by analyzing
its spread in the Pauli operator basis [31, 75]. The SRE
stands out among non-stabilizerness monotones as it can
be efficiently evaluated without the need for minimiza-
tion procedures. In this work, we adopt the methodology
outlined in Ref. [65] to compute the SRE. Specifically, we
transform the ground state vectors obtained from exact
diagonalization into matrix product state (MPS) tensor
representations and employ the Perfect Sampling algo-
rithm [76–78].
In Fig. 5, we show the numerical results for the scal-

ing of SRE in the GS of the Hg model. From panel
(a), we observe that the SYK-4 (g = 0) case exhibits
a higher degree of non-stabilizer resources compared to
the SYK-2 (g = 1) limit. From Fig. 5 (a), we observe
that the SRE of the SYK-4 ground states does not ex-
hibit a consistent monotonic increase with fermion num-
ber N , but instead shows a non-monotonic dependence.
A more detailed analysis in Fig. 5 (b) reveals an oscil-
latory pattern in the SRE. The data is grouped and la-
beled according to the values of N mod 8, as indicated
in the captions. Each of the three groups corresponds
to a distinct exponent of the damped exponential. This
grouping is motivated by the observation in [20], where
it was first noted that the SYK-4 Hamiltonian exhibits
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a particular particle-hole symmetry. The authors linked
this symmetry to different Gaussian random matrix uni-
versality classes: GOE for N mod 8 = 0, GUE for N
mod 8 = 2, 6, and GSE for N mod 8 = 4, which manifest
in the Hamiltonian’s spectrum. We observe the effects of
this symmetry specifically in the ground state, without
considering the full Hamiltonian spectrum. In contrast
to entanglement (see Fig. 2) and ground state energy [79],
the SRE appears to be much more sensitive to the finite-
ness of N . This highlights the unique ability of SRE
to reveal hidden structures within many-body systems.
A recent, striking example is the ability of SRE to de-
tect a quantum phase transition that is not captured by
entanglement in a system without a conventional order
parameter [80].

How does the average SRE evolve as the system size
increases for the ground state of the SYK-4 Hamiltonian?
This behavior is depicted in panel (c) of Fig. 5. By fitting
the data to a linear function [81], we obtain the following
expression for the average SRE:

⟨M2⟩fitM ∼ −2.4 + 0.95
N

2
. (11)

For Haar random states, it is known that

MHaar
2 = −2 +

N

2
, (12)

to leading order in the system size [31, 65, 82]. The fac-
tor 2 in the denominator of the linear term arises because
N/2 represents the support of the spin/qubit represen-
tation. Our results show that the SYK-4 ground states
slightly deviate from the characteristics of fully quan-
tum chaotic and universal states, with a linear prefac-
tor difference of approximately 0.05 when compared to
Haar random states. A similar deviation was recently
observed in the entanglement of middle-of-the-spectrum
states in the SYK-4 model [17]. This provides evidence
that low-temperature states, such as the ground states,
fail to reach full universality.

Anti-Flatness.— A crucial point in the understanding
of the relationship between SRE and entanglement comes
from the realization that stabilizer states must have a flat
entanglement spectrum [83]. Indeed, one can show that
there is a strict relationship between the lack of flatness
of the entanglement spectrum of the RDM and the SRE
of the full state. In [84] it is shown that the linear SRE is
exactly proportional to the average anti-flatness defined
on a subsystem as F := Tr[ρ3R]− Tr2[ρ2R]. Another mea-
sure of anti-flatness is a numerically and analytically ac-
cessible quantity that is the logarithmic anti-flatness [65]

F(ρR) := 2 (S2(ρR)− S3(ρR)) . (13)

In Supplementary Material [67], an excellent agreement
across all system sizes is observed with the analytical re-
sults we derive for the SYK2 (g = 1) limit where we ob-
tained a closed-form expression for the logarithmic anti-

flatness

FSYK2(R, f) = 2R(1− f)
∞∑

n=1

1

n

(
1

2n
− 1

2

3n

4n

)
× 2F1

(
1
2 , 1− n , 2, 4f(1− f)

)
(14)

where 2F1(a, b, c, d) is a hypergeometric function, n > 0,
and 0 < f ≤ 1/2. For Haar random state in the large N
limit the logarithmic anti-flatness approach system-size-
independent value of FHaar = log (5/4) ≈ 0.223 [65].
One of the most useful measures of anti-flatness comes

from the modular entropy [85]

S̃α := α2∂α

(
α− 1

α
Sα

)
. (15)

Its derivative with respect to the Rényi parameter at α =
1 is minus the variance of the entanglement Hamiltonian
Hρ := − log ρ defined as

−Varρ(Hρ) := −⟨log2 ρ⟩ρ + ⟨log ρ⟩2ρ = ∂αS̃α

∣∣∣
α=1

(16)

It is also known as capacity of entanglement CE and it is
yet another measure of anti-flatness [86–88]. This quan-
tity is relevant because it quantifies the amount of non-
local SRE, that is, the SRE that cannot be undone by
local unitary operations [35]. For Haar random states,
one can compute [88, 89]

∂αS̃
Haar
α

∣∣∣
α=1

=
11

4
− π2

3
≈ −0.539868. (17)

which we use in our analysis as a reference value.
In Fig.6, we compute the capacity of entanglement CE

as a probe of non-local SRE as a function of g in both
the GS and MS of Hg. We see that SYK4 features a
Haar-value capacity of entanglement, which is in perfect
agreement in the MS. The finite-size scaling of the inset
shows again the symmetric behavior of robustness ob-
served earlier: while for the GS the SYK4 features are
fragile, they are robust and can be extended all the way
for any g < 1 for the MS.
Conclusions and Outlook.— In this paper, we studied

the interplay between entanglement and non-stabilizer
resources in the SYK4+SYK2 model through several fig-
ures of merit that involve probes into the non-local char-
acter of stabilizer entropy, the entanglement spectrum
statistics, and the adherence of such quantities to predic-
tions from random matrix theory. We show that SYK4
features a complex pattern of this interplay while the in-
tegrable SYK2 is not universal. Moreover, we show the
robustness of the universal features of SYK4 and find that
they vary greatly between the ground state and highly
excited states. For this reason, it would be interesting
to study the behavior of such interplay away from equi-
librium and its role in operator scrambling [91]. The
quantum advantage of SYK batteries could be related
to an optimal usage of both entanglement [92] and non
stabilizer resources [93–95].
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Figure 6: Ensemble averaged half-system capacity of en-
tanglement in the GSs (left panel) and MSs (right panel)
of Hg. The inset shows how the relative gap defined as
∆CE = |(CE−CHaar

E )/CHaar
E | of g = 0 (SYK4-) and g = 1

(SYK2-) scales with respect to the Haar value. More on
the CE in the SYK-2 can be found in [90].

One of the most striking features of SYK4 is its dual

JT gravity at low temperature. We have shown that
SYK4 is fragile under a two-body pertrubation in the
ground state while robust at high-energy, leaving open
the question of its robustness at low temperature, which
we plan to answer in a future work.
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Appendix A: On the evaluation of Stabilizer Rényi Entropy
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N
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Direct
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Figure 7: This figure shows the ability of the Perfect Sampling algorithm to evaluate the SRE efficiently. We use
M = 100 different disorder realizations to compute the average SRE and perform an average (denoted in the y-label
as ⟨•⟩M ) over these realizations. We observe that for larger systems, the SYK-4 model host more magic as compared
to the SYK-2 model. The coupling strength in general is set J = 1.

Here, we outline key details of the Perfect Sampling algorithm [1, 2], essential for obtaining reliable estimates
of the Stabilizer Rényi Entropy (SRE) presented in Fig. 5. Starting from a state vector supported on N/2 qubits
(where N denotes the number of Majorana fermions) obtained via exact diagonalization, we represent it as a Matrix
Product State (MPS) with a maximum bond dimension of χ = 2N/2 and a truncation cutoff of 10−8 using the ITensor
library [3, 4]. We then sample 104 Pauli strings, leading to an absolute error in the stabilizer entropy estimation
within the range 10−1 − 10−2.

To verify the accuracy of this approach, we consider smaller system sizes in Fig. 7, where the SRE can be computed
exactly from the state vector, evaluating all the 4N expectation values of the Pauli strings, confirming that the method
achieves sufficient precision. A similar approach was employed in [5]. The open-source ITensor implementation of this
method will be made available in a forthcoming publication [6].

In Fig. 5 (b) the green crosses are related to sizes such that N mod 8 = 0, for which the fit parameters are
a = 0.57, b = 0.036, blue crosses for N mod 8 = 2, 6, with a = 0.44, b = 0.09, and red circles for N mod 8 = 4, with
a = 0.46, b = 0.07. The lines represent fits to the function f(x) = a(1− exp (−bx)).

In Fig. 5(c), we highlight a factorizable n-qubit state with the maximal amount of single-qubit magic, shown
in magenta. It is known that there is a single qubit state which maximizes the SRE, the golden state |G⟩⟨G| =
1
2

(
I + X+Y+Z√

3

)
. The stabilizer entropy of its n-qubits product state is M2(|G⟩⟨G|⊗n) = n log2

(
3
2

)
.

Appendix B: Capacity of entanglement - quick rederivation

For the convenience of the reader, we compute here Eq. 16 for the pure Haar random states. Original derivations
were performed in [7, 8]. For Haar random pure states, the average Rényi entropy to leading order inN, with positive
integer α, is given by

SHaar
α =

1

1− α
log

[
2N−R(1+α)

α∑
k=1

H(α, k)2(2R−N)k

]
(B1)

https://doi.org/10.1103/PhysRevResearch.2.023095
https://doi.org/10.22331/q-2021-07-15-505
https://doi.org/10.1103/PhysRevLett.125.040601
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where the coefficients H(α, k) = 1
α

(
α
k

)(
α

k−1

)
are known as Narayana numbers. To start the calculation we simplify the

expression first by fixing the system-to-subsystem size ratio to R/N = 1/2 to obtain for Eq. (B1) the following

SHaar
α =

1

1− α
log

[
2

N
2 (1−α)

α∑
k=1

H(α, k)

]
. (B2)

Plugging this expression into the expression for modular entropy we obtain

S̃Haar
α = −αHα− 1

2
+ αHα+1 +

1

2
(α(N − 4) log(2)− log(π)) + log

(
2

1
2 (−αL+4α+L)Γ

(
α+ 1

2

)
Γ(α+ 2)

)
, (B3)

where Hx =
x∑

k=1

1
k is are the Harmonic functions and Γ(x) are the usual gamma functions. After taking another

derivative yields closed form the expression for the capacity of entanglement

∂αS̃
Haar
α = α

(
Ψ(α+ 2)−Ψ

(
α+

1

2

))
, (B4)

where Ψ = ∂α log (Γ(α)) is the derivative of the logarithm of the Gamma function, known also as the digamma
function. Evaluating this function at α = 1 we obtain

∂αS̃
Haar
α

∣∣∣
α=1

=
11

4
− π2

3
≈ −0.539868, (B5)

to leading order in system size. Notice that this result does not explicitly depend on the system size. Numerical
checks against synthetic Haar states for finite sizes (up to 20 qubits) confirm this estimate.

Appendix C: Ensemble relizations

Throughout our work, we generate M independent realizations of the SYK-4 and SYK-2 Hamiltonians which we
scale (multiply) by the scalar parameter g. This method is particularly advantageous for larger system sizes, where
constructing the SYK-4 Hamiltonian becomes computationally expensive and represents the main computational
bottleneck. Even though the Hamiltonian is sparse, it requires significant resources to store, e.g. for N = 32 a single
sparse realization of the SYK4 Hamiltonian takes up around 1GB of memory. The step size for the interpolation
parameter used through the text ∆g = 1/100, while exclusively for the SRE computation to ease the computation
load we compute it for every ∆g = 0.05. The number of realizations for each fermion number N is as follows: N = 6
(1000), N = 8 (1000), N = 10 (1000), N = 12 (400), N = 14 (400), N = 16 (200), N = 18 (200), N = 20 (200),
N = 22 (100), N = 24 (100), N = 26 (100), N = 28 (50), N = 30 (30), and N = 32 (10).

Appendix D: Analytical derivation of the logarithmic anti-flatness for the SYK-2 model

Here we provide some important details enabling and leading to the closed-form expression in Eq. (14). We closely
follow the derivation performed for α = 2 Rényi entropy in Ref. [9, 10]. In particular, starting from Eq.(23) in [9] we
have for the α = 3 that

S
(3)
R = −1

2

R∑
k=1

ln
[
λ3k + (1− λk)

3
]
, (D1)

where {λk; k = 1, 2, ..., R} are the eigenvalues of the reduced density matrix. After tracing out degrees of freedom,
the subscript R-th is a notation used to specify the one-body correlation (or reduced density) matrix ρR. The key
insight in deriving α = 2 was the observation in Ref. [10] that the SYK2 model subsystem eigenvalues belong to the
β-Jacobi ensemble with β = 2. In particular, subsystem reduced density matrix eigenvalues, for different relative size
f , have the following form

F(f, p) =
1

2πf

√
p(1− p) + f(1− f)− 1

4

p(1− p)
, (D2)
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Figure 8: Ensemble averaged half-system (f = 1/2) anti-flatness in the ground states of the interpolated SYK
model. The overline also indicates an average has been taken over the N possible bipartitions. The shaded areas
represent the standard deviation across M realizations of the Hamiltonian. The dashed lines are the analytical

results given in Eq. (D9).

where we note that this PDF is supported only on the domain p ∈ [p−, p+], with p± = 1
2 ±

√
f(1− f). The average

third Rényi entropy is obtained by

S
(3)

= −R
2

∫
dpF(f, p) ln

[
p3i + (1− pi)

3
]
, (D3)

after replacing the sum in Eq. (D1) as
∑
i

→ R
∫
dpF (f, p). We therefore have

S
(3)

= − R

4πf

∫ √
p(1− p) + f(1− f)− 1

4

p(1− p)
ln
[
p3i + (1− pi)

3
]

(D4)

Changing the variable as p = (λ+ 1)/2 we obtain

S
(3)

= − R

2πf

λ+∫
λ−

√
1−λ2

4 + f(1− f)− 1
4

1− λ2
ln

[(
λ+ 1

2

)3

+

(
1− λ+ 1

2

)3
]
dλ, (D5)

where the term in the logarithm after expanding, simplifying, and rearranging reads

ln

[(
λ+ 1

2

)3

+

(
1− λ+ 1

2

)3
]
= −

∞∑
n=1

1

n

(
3

4

)n

(1− λ2)n (D6)

Where we expanded the logarithm as ln (1− x) = −
∞∑

n=1

xn

n leading to

S
(3)

=
R

4πf

∞∑
n=1

1

n

(
3

4

)n
+2

√
f(1−f)∫

−2
√

f(1−f)

√
(1− λ2) + 4f(1− f)− 1

1− λ2
(
1− λ2

)n
dλ

︸ ︷︷ ︸
−2(f−1)fπ 2F1( 1

2 ,1−n,2,−4(f−1)f)

. (D7)

Using the following definition of the logarithmic anti-flatness

F = 2 (S2(ψR)− S3(ψR)) , (D8)
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we trivially obtain

F (R, f) = 2R(1− f)

∞∑
n=1

1

n

(
1

2n
− 1

2

3n

4n

)
2F1

(
1

2
, 1− n , 2, 4f(1− f)

)
, (D9)

In Fig. 8 we showcase the validity of the derived expression for the SYK-2 model.

Appendix E: Hamiltonian spectral statistics
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Figure 9: Density of states (DOS) of the Hg spectrum for N = 22 fermions with support on 11 qubits, with M = 40
realizations of the disordered Hamiltonian. We considered 40960 eigenvalues for each panel and corresponding g. See
text for details and discussions. An interesting observation regarding the DOS support is highlighted below.

Here we discuss the nuances related to the Hamiltonian spectrum of the interpolated model Hg. We first expose
the results related to the full Hamiltonian spectrum of the model. More specifically, we plot the Density of states
(DOS) of the spectrum in Fig. 9. We can infer that its shape is akin to the one encountered in Gaussian ensembles
of Random Matrix Theory (RMT) and that of Wigner semi-circle distribution. To study universal features of a
system, it is essential to look at the gaps between eigenvalues rather than the eigenvalues distribution itself, that is
not universal. A more detailed analysis of eigenvalues gaps of the SYK4 across different system sizes can be found
in [11]. The SYK4 model admits different universality classes due to the existence of a particular size-dependent
particle-hole symmetry of Gaussian ensembles as tabulated in table I. While the bulk spectrum of the SYK4 model
does indeed behave according to RMT [12], the spectrum at the edges is a subject of current research [13].

N 16 18 20 22 24 26 28 30 32
class GOE GUE GSE GUE GOE GUE GSE GUE GOE

Table I: Due to a particular particle-hole symmetry, the SYK-4 model exhibits all three Gaussian ensembles [11].

In Fig. 9, by changing the interpolation parameter g ∈ [0, 1] we infer a smooth transition from a semi-circle type
DOS (g ≪ 1) to one that of a Gaussian (as g approaches 1), final lower right panel [14]. Note that we take into account
every second eigenvalue since SYK4 spectrum eigenvalues are all twice degenerate. For consistency, we extend this
choice of forming the DOS from every second eigenvalue for all values of g. Therefore the total number of eigenvalues

considered for each panel of Fig. 9 is M2
N
2 −1 = 40960.

We highlight a noteworthy aspect of the smooth change between the SYK4 and SYK2 DOS that can not be directly
observed in Fig. 9. More specifically, for small values of g in the range g ∈ [0, 0.1], we observe the shrinking of the
energy support of the Hamiltonian eigenvalues and correspondingly the DOS support. We make this observation
for all system sizes up to N = 22 for which we computed the full spectrum. For values of g that are larger than
0.1, the support grows and the DOS starts spreading rather than shrinking. This change in behavior in the DOS
could been related to our observations presented in Ref. 3 for the ground state. Interestingly, the ground state
properties are sensitive to these changes in the Hamiltonian behavior, while the middle of the spectrum states are
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Figure 10: Spectral statistics results. Left panel : KL divergence (defined in the main text) between known Gaussian
ensemble RMT distributions and the underlying dataset for the consecutive gap ratios PDF P (r). Right panel : The
averaged consecutive gap ratios. We considered 40960 eigenvalues for each panel and corresponding g. Smaller systems
size exhibit similar findings to the presented results for N = 22 in this figure.

not. This phenomenology can potentially be related to the findings in [15] regarding the low-temperature behavior of
the interpolated SYK model.

To round off our short survey into the Hamiltonian spectrum we present Fig 10. In the left panel, we show the results
for the KL divergence (defined in the main text) between the full Hamiltonian Hg spectral statistics as compared to
the well-known Gaussian RMT ensembles. The result indicates that for most values of the interpolation parameter g
the underlying spacing distributions are similar to the correlated Wigner-Dyson (WD) RMT ensemble expectations.
However, we note that at around g ∼ 0.75 there is a change of behavior toward the uncorrelated Poisson distribution
which we further comment on below. The explicit expressions of the distribution of consecutive gap ratios have been
derived in [16], but for the convenience of the reader we present them below. For the standard correlated ensembles
(GOE, GUE, and GSE, with β = 1, 2, 4 respectively) we have

PWD(r, β) =
Z−1
β · (r + r2)β

(1 + r + r2)1+
3
2β
, (E1)

where

Zβ =



8

27
, β = 1,

4

81
· π√

3
, β = 2,

4

729
· π√

3
, β = 4,

(E2)

while the uncorrelated ensembles typically follow the Poisson distribution, which in terms of the consecutive gap ratios
reads

PPoisson(r) =
1

(1 + r)2
. (E3)

We associate consistent color coding between all figures in this work, we choose blue for the Poisson distribution, red
for GOE, green for GUE and magenta for GSE.

In the right panel of Fig 10 we perform a complementary analysis of the average consecutive gap ratios, defined as

r̄ =

〈〈
min(sk,j , sk+1,j)

max(sk,j , sk+1,j)

〉〉
2N/2−1−2,M

=
1

M(2N/2−1 − 2)

M∑
j=1

2N/2−1−2∑
k=1

min(sk,j , sk+1,j)

max(sk,j , sk+1,j)
(E4)
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where sk,j = λk+1,j − λk,j , and the index j = 1, 2, . . . ,M runs over M available realizations while the k index the
available eigenvalues. It is known [16] that the WD ratios

r̄WD−GOE = 4− 2
√
3 ≈ 0.53590, (E5)

r̄WD−GUE = 2

√
3

π
− 1

2
≈ 0.60266, (E6)

r̄WD−GSE =
32

15

√
3

π
− 1

2
≈ 0.67617, (E7)

while for the uncorrelated ensemble, we have

r̄Poisson = 2 ln 2− 1 ≈ 0.38629. (E8)

We observe that indeed for the system size considered (N = 22, but similar follows for other smaller system sizes),
we recover universal statistics of the GUE for the SYK4 (g = 0) model that matches the GUE ensemble as previously
shown in [11] and in agreement to Table I. Interestingly, as soon as we introduce finite g the underlying distribution
of the consecutive level spacing statistics changes its universality class, and more agreement is found with the GSE
ensemble compared to the other distributions. This is potentially related to the fine-tuned nature of the SYK4 model
and to the particle-hole symmetry that is lost at any non-vanishing g. Similar observation on the quantum chaotic
nature of the Hamiltonian spectrum for N ≤ 22 for all choices of the interpolation parameter has been highlighted
in [12]. However, we underline that the analysis performed by the authors of [12] put the focus on the bulk spectrum,
which can influence the overall value of the average gap.

Moreover, we observe that the full Hamiltonian spectrum manifestly conforms to the universal correlated statistics
of RMT until around g ≈ 0.75 where more similarity can be found with the uncorrelated Poisson distribution (left
panel). However, we note that this type of analysis is influenced by the binning of the PDF and the finite-size effects
that naturally plague any finite quantum many-body system. Overall this stops us from providing conclusive judgment
on the chaoticity/integrability present in the model from the full Hamiltonian spectrum. In a way, this justifies our
approach to studying state complexity instead as has been done in the main text.

In the next subsection on Entanglement Spectrum Statistics, we comment on some features that some surprising
SYK model features are inherited by the eigenstates and are not restricted only to the eigenvalues.

Appendix F: Analysis of the gap

A comment on the behavior of the gap between the ground state and the first excited state in the interpolated SYK
model is in order. In quantum many-body systems, the behavior of the energy gap is instrumental in understanding
quantum phase transitions [18]. Therefore, it is of value if one can infer a transition between the complex SYK4 and
integrable SYK2 phase based on this commonly studied observable in quantum systems.

The low energy spectrum of the interpolated SYK model behaves differently between the SYK4 (g = 0) and SYK2
g = 1 models. Individual energy levels have the spacing ∼ exp (−NS) with S being the system’s entropy as N → ∞
for the SYK4 model, while for the SYK2 the spacing behaves as ∼ 1/N at the bottom of the band [17].
In Fig. 11, we show the behavior of the average ground state to the first excited state gap for different choices of

the interpolation parameter g. Fitting a power law function to the data we observe consistency with the expected
N−1 power law with exponent −1 as g approaches 1. On the other hand, when we approach the SYK4 point, i.e.
g going to 0, we are still able to fit a power law function with reasonable precision. This implies that for the finite
system data, it is hard to differentiate between a power-law and the exponential behavior expected for the SYK4
model, indicating the ineffectiveness of this particular probe.

Appendix G: Entanglement Spectral Statistics (ESS) and normalized Reduced Density Matrix (RDM)
spectrum

In this section, we complete our survey of the ESS of the middle spectrum state not presented in the main text.
More specifically, we repeat the same analysis presented in Fig. 4, but for the middle of the spectrum state (MS) at
E ∼ 0, see Fig. 9. In Fig. 12, we observe that for the considered system sizes the ESS does not show agreement with
RMT universal ensembles and shows good agreement with the uncorrelated Poisson distribution.

In Fig. 13, we expand on this point and demonstrate a broader view-point of the absence of universal behavior
in the RDM eigenvalues. In the top panel, we show the results for pure Haar random states on N = 11 qubits.
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Figure 11: Power-law fits of the GSs energy gaps ∆E = E1 − E0 of Hg for different values of the interpolation
parameter g, where E0 is the GS energy and E1 the first excited state energy. As soon as g deviates from zero, the
low-temperature density of states no longer follows an exponential distribution [17]. The first plot, corresponding to
g = 0.01, shows three distinct fits, reflecting a remnant of the symmetry in the model at g = 0, see [11]. The orange
line corresponds to GOE, the blue one to GSE and the red line to the GUE. Each data point represents an average

over 100 disorder realizations for system sizes smaller than 20, and 20 disorder realizations for larger sizes.
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Figure 12: ESS of the middle of spectrum state RDM eigenvalues of the Hg model for different values of g. We
superimpose the analytical curves for the Wigner-Dyson (dashed) and Poisson (blue continuous) distribution for
comparison. System size N = 22 and number of realizations is M = 100. The number of bins used for the histogram
is 100. The colored numbers represent the KL divergence of data against known distributions [16]

To generate such states we simply draw real and imaginary parts of the expansion coefficients of |ψ⟩ as random
Gaussian variables, and normalize the output vector state [19]. This procedure provides an excellent agreement with
the predicted Marchenko-Pasture (M-P) distribution defined in the main text and represented with the purple line
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Figure 13: Haar vs middle of the spectrum (MS) SYK states comparative analysis across a single bipartition (same
results for other bipartitions). Upper row : Haar states included by influenced by the odd/een effects (the reason for
the mismatch with the purple M-P distribution [20]); Middle row : MS state for the g = 0 SYK4 Hamiltonian; Lower
row : MS state for g = 0.01. Other parameters: number of realizationM = 100, nb of spins N = 11 (fermions N = 22)
and across bipartition [1, 2, 3, 4, 5].

in the middle panels. We note that the disagreement between obtained values and the M-P distribution comes from
the odd/even effect that vanishes in the thermodynamic limit. The final panel of the upper row shows that ESS for
the Haar states does conform with the RMT prediction and universal GUE ensemble. The Haar example serves as a
reference point to the results we obtain for the MS state of the interpolated model. More specifically, we can observe
that the RDM spectrum itself shows quite similar features to that of a Haar random state, however, the ESS point
to an uncorrelated ensemble and the non-universal Poisson distribution. These unorthodox features of SYK4 and of
the interpolated model, when it comes to universality statistics probes, are most likely part of the broader context of
the particular structure that the eigenstates entail and are evidenced already in the above mentioned chapter on the
Hamiltonian spectrum statistics.
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